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Abstract With the increasing amount of 3D data and the
ability of capture devices to produce low-cost multimedia
data, the capability to select relevant information has be-
come an interesting research field. In 3D objects, the aim
is to detect a few salient structures which can be used, in-
stead of the whole object, for applications like object regis-
tration, retrieval, and mesh simplification. In this paper, we
present an interest points detector for 3D objects based on
Harris operator, which has been used with good results in
computer vision applications. We propose an adaptive tech-
nique to determine the neighborhood of a vertex, over which
the Harris response on that vertex is calculated. Our method
is robust to several transformations, which can be seen in the
high repeatability values obtained using the SHREC feature
detection and description benchmark. In addition, we show
that Harris 3D outperforms the results obtained by recent
effective techniques such as Heat Kernel Signatures.

Keywords 3D interest points detection · Local features ·
Harris operator

1 Introduction

Many applications have benefited from the wide diffusion of
3D models. Areas such as medicine, engineering, entertain-
ment, and so on are increasingly relying in processes that
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involve this kind of information. Coupled with this, an im-
proved ability of capture devices has been observed, allow-
ing to generate low-cost three-dimensional objects and make
extensive use of them. In addition, tasks involving 3D mod-
els such as mesh analysis and processing are active research
areas.

For the same reasons, there is a growing interest in the
use of detailed models for better representation. This im-
plies a higher necessity for feature detection tasks. As with
images, the better is the resolution of a 3D object, the better
the representation of some entity and therefore it is neces-
sary to be able to select distinctive points on a 3D model
in order to keep the efficiency in the processes applied on
them. Some tasks that benefit from this capability are object
registration [5], object retrieval and matching [9], mesh sim-
plification, viewpoint selection [14], and mesh segmentation
[11, 25], just to name a few.

The interest point detection on 3D data is a challeng-
ing problem for several reasons. First, there is no consen-
sus about the definition of an interest point. A commonly
used definition (that we use in this paper) relates the measure
of interest with the level of protrusion of outstanding local
structures. So, vertices on smooth or nearly planar sections
of a surface will have low interest, as opposite to vertices
in regions with uncommon local structure. For instance, in
a human-shaped model, an interest point detector should se-
lect vertices on the face, hands, and feet. Second, the topol-
ogy in 3D meshes is arbitrary. That is, a vertex can have
an arbitrary number of neighboring vertices. This makes
the tasks of selecting a local neighborhood around a vertex
harder. In addition, this drawback causes that different tes-
sellations can represent the same locality and therefore, an
interest point detector should be able to deal with that. Third,
without a well-defined topological structure for meshes, the
extent of a locality in which a vertex is an interest point is
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Fig. 1 This figure shows the
steps we propose to detect
interest points in 3D meshes

unknown or difficult to compute. Finally, there is no addi-
tional information other than the position of vertices and the
connectivity information among them. This fact complicates
the process because the level of interest needs to be mea-
sured using the available information, which also depends
of the topology of the mesh.

In a different scenario, interest point detectors for im-
ages have reached an acceptable effectiveness. The reason is
that image structure is well-defined and interest points corre-
spond with pixels that represent interesting structures in the
scene captured in the image. In that sense, several methods
have been proposed for detecting interest points taking into
account different scales and transformations. As a result, the
range of applications in computer vision that makes use of
interest points detection has increased considerably in recent
times such as image matching [17], image stitching [2], and
human activity recognition [12, 13], just to name a few.

However, despite the success of these techniques in the
image domain, trying to adapt them to 3D meshes is not a
trivial task. Firstly, the adaptation is not direct because 3D
meshes structure is very different from images. Secondly,
the transformations required to be robust in 3D domains
(isometry, topology, change of tessellations, downsampling,
etc.) are also different.

In this paper, we present an effective and efficient exten-
sion of the Harris operator for 3D meshes. We chose the Har-
ris operator for several reasons. First, the computation of the
operator is an efficient and simple task. This is an important
issue if we want use the interest point detection as a pre-
liminary stage of subsequent process such as shape match-
ing, registration or object recognition. Second, Harris-based
methods have been effectively used in a number of applica-
tions and they have a high effectiveness as reported in the
evaluation reports [19, 21]. Finally, an interesting evidence
has been found recently, which greatly favors the Harris in-
terest point detection method. Loog and Lauze [16] recently
showed an important connection between the Harris oper-
ator and the computational visual attention model of visual
perception. Roughly speaking, their model proved that inter-
est points detected by the Harris method have low probabil-
ity of appearing in other locations in the same image. These
reasons encouraged us to investigate an effective extension
of the Harris operator for 3D meshes, trying to comply with
the robustness to the transformations in 3D domain.

Our method is outlined in Fig. 1. Given a 3D mesh, not
necessarily manifold, the main process is performed in a

vertex-wise manner. The overall process consists of four
steps. Firstly, our algorithm determines a local neighbor-
hood around a vertex. The subsequent tasks are performed
over this local neighborhood. Secondly, the neighborhood is
processed so that it is prepared for a fitting step. We try to fit
a quadratic surface to the set of points. This surface is a good
representation of the locality and we consider it as an local
image. Thirdly, we propose to calculate derivatives using a
smoothing over the surface. We can use these derivatives for
computing the Harris response for each vertex. Finally, our
method selects the final set of interest points. A preliminary
version of our method has been presented in a conference
paper [23].

The contributions of this paper are summarized as fol-
lows:

• We improve the process for calculating the Harris opera-
tor for 3D meshes, making it robust to noise, change of
tessellations and other transformations which deform the
mesh structure such as local scaling, shot noise, presence
of holes, just to name a few.

• We propose a novel method to define the neighborhood
size of a vertex, depending on its surrounding structure.

• We give several options to select a few interest points us-
ing the information that the Harris operator provides.

• We present a comprehensive experimentation, trying to
investigate the effect of different parameters choices and
comparing our method with effective methods in the state
of the art.

The organization of this paper is as follows. Section 2
presents the related works. Section 3 presents a detailed de-
scription of our method. Section 4 presents and discusses the
experimental results. Finally, Sect. 5 concludes the paper.

2 Related work

The interest point detection topic emerged in the computer
vision community with the aim of reducing the amount of
information used in high-level vision tasks. A pioneering
work was presented by Harris and Stephens [7], which was
the basis for many later works. For readers interested in in-
terest points detectors on images, we recommend the evalu-
ation paper presented by Schmid et al. [21], which contains
detailed descriptions and performance evaluation of several
proposed methods.
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For 3D meshes, several approaches have been proposed,
most of which have tried to extend the detectors proposed
for images. After the SIFT method proposed by Lowe [17],
a number of extensions have been presented which use
Difference-of-Gaussians (DoG) as interest point detector.
Castellani et al. [3] applied the DoG detector over vertices
in scale space obtained with successive decimations of the
original shape. Vertices with high response in their DoG op-
erator are selected as interest points. In the same way, Zou
et al. [27] proposed to build a geodesic scale space, and sub-
sequently to apply DoG detector on that space for detect-
ing interest points on a surface. Also, Zaharescu et al. [26]
assumed that the vertices of an 3D object have associated
information such as curvature or photometric properties.
Defining a discrete Difference-of-Gaussians operator, the
authors applied this operator on the function defined by
the associated information over a manifold. This approach
showed good results in matching of 3D models sequences.

On the other hand, the geometric diffusion theory can be
used for detecting interest points on surfaces. The diffusion
process reveals interesting characteristics from the intrinsic
geometry of a surface which can be exploited to detect out-
standing structures. As a 3D surface property related to the
diffusion process on a manifold, the Laplace–Beltrami op-
erator has been also used to detect interest points. Hu and
Hua [9] defined the geometric energy of a vertex as function
of the eigenvalues and eigenvectors of the Laplace–Beltrami
spectrum of a given object. Vertices where the energy is a
maximum are considered as interest points. In addition, the
energy provides the scale where the selected vertices are in-
teresting. The selected interest points were used in a match-
ing task with promising results. On the other hand, Sun et al.
[24] defined the Heat Kernel Signature as a temporal domain
restriction of the Heat Kernel on a manifold, which is re-
lated to the Laplace–Beltrami spectrum. In 3D meshes, each
vertex has an associated signature. A vertex is selected as
interest point, when for large time values, its signature has a
maximum with respect to the neighbor vertices.

Similarly, Zou et al. [28] proposed to build a scale space
of the surface geometry via the surface Ricci flow which
satisfies a set of desired properties for a multi-scale repre-
sentation. The authors applied the Ricci flow over a metric
of the surface based on edge lengths. The scale space is rep-
resented as a matrix with curvature values calculated from
the set of diffused metrics. Then, the Laplacian of a vertex
is computed using the cotangent schema using the curvature
as associated values. A vertex is considered as an interest
point if it is an extreme of the Laplacian in the 1-ring neigh-
borhood and neighboring scales.

Also, curvature-based methods have been proposed.
Gelfand et al. [5] described an interest point detector based
on a new descriptor called the integral volume descriptor.
For each vertex, the amount of volume in the intersection

of a ball centered in the vertex and the 3D object describes
an interesting local measure. The authors showed that this
quantity is closely related to the curvature in the vertex. Ver-
tices with uncommon integral values are selected as interest
points. Also using curvature in vertices, Ho and Gibbins [8]
suggested a measure called the curvedness measure in or-
der to describe the geometric information in a vertex. The
curvedness is calculated from the principal curvatures of a
vertex. This measure can be calculated in different scales by
selecting different neighborhood sizes which are used to fit
quadratic patches over which curvatures are computed. Ver-
tices with extremal values in its curvedness, with respect to
neighboring points and scales, are selected as interest points.

Differently, Liu et al. [15] proposed a Monte Carlo strat-
egy to select a random set of points on a surface with each
point having the same probability to be chosen. These points
were used in partial shape retrieval. The assumption be-
hind this proposal is that the vertices of a shape are sam-
ples of the original surface and the tasks that use them can
be affected by shape tessellations. Similarly, Shilane and
Funkhouser [22] considered random points on a 3D surface,
selecting only those points that contribute to improve the re-
trieval performance. With a training phase, it was possible to
assign a predicted distinction value to each selected point in
the 3D collection and thus, using that values to assign new
ones to points of a new shape.

As another approach, the mesh saliency defined by Lee
et al. [14] has proven to be a robust feature to many 3D ap-
plications. The process to compute the mesh saliency of a
3D object begins calculating a Gaussian-weighted average
of the mean curvature on a surface. Each vertex in an ob-
ject is thus associated with the difference of such average
in different scales, which is the saliency of that vertex. Ver-
tex with the highest saliency can be considered as interest
points.

Conformal parameterization has also been used to pro-
pose interest points detectors. Methods based on conformal
parameterization [10, 20] transform a 3D surface into a 2D
parameterization that can be seen as an image. A 3D to 2D
mapping is said to be conformal if angles are preserved.
Once an image is computed, interest points can be detected
on it, and subsequently these are mapped back to the 3D
domain.

Finally, Mian et al. [18] related the repeatability of key-
points (extracted from partial views of an object) with a
quality measure based upon principal curvatures.

3 Interest points detection

Harris and Stephens [7] proposed an interest points detector
for images. Their method is a popular technique due to its
strong invariance to rotation, scale, illumination variation,
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and image noise [21]. The Harris detector is based on the lo-
cal autocorrelation function of a signal, which measures the
local changes of the signal with patches shifted by a small
amount in different directions. The local autocorrelation is
defined as:

e(x, y) =
∑

xi ,yi

W(xi, yi)
[
I (xi + �x, yi + �y) − I (xi, yi)

]2

(1)

where I (·, ·) denotes the image function and (xi, yi) are the
points in the Gaussian function W centered on (x, y), which
defines the neighborhood area in analysis.

Using a Taylor expansion truncated to the first order
terms to approximate the shifted image, we obtain:

e(x, y) = S

[ ∑
xi ,yi

W.I 2
x

∑
xi ,yi

W.Ix.Iy∑
xi ,yi

W.Ix.Iy

∑
xi ,yi

W.I 2
y

]
ST

= SE(x,y)ST ,

(2)

where S = [�x �y] is a shift vector, Ix and Iy denote the
partial derivatives in x and y, and along with W are evalu-
ated in (xi, yi) points.

Harris and Stephens proposed to analyze the eigenvalues
of matrix E, which contains enough local information re-
lated to the neighborhood structure. In addition, to avoid the
expensive eigenvalue calculation, they proposed to assign to
each pixel in the image the following value:

h(x, y) = det(E) − k
(
tr(E)

)2 (3)

with k constant.
The Harris operator has been used in many applications

in image processing and computer vision by its simplicity
and efficiency. However, the problem with 3D data is that
the topology is arbitrary and it is not clear how to calculate
the derivatives. To cope this problem, Glomb [6] suggested
some approaches. We take this work as a basis for proposing
a robust interest points detector on 3D meshes.

3.1 Robust Harris operator on 3D meshes

Given a vertex of a 3D object, we are interested in calcu-
lating the Harris operator value associated with that point.
A 3D object is represented as a set of vertices V and a set of
faces F with adjacency information between these entities.
In addition, our method is not restricted to manifold meshes.

Let v be the analyzed vertex and Vk(v) the neighborhood
considering k rings around v. Figure 2 shows vertex v (black
circle), the first ring around v (path formed by green circles),
the second ring (path formed by blue circles), and the kth
ring (path formed by yellow circles). All these vertices cor-
respond to the neighborhood Vk(v). The method to calculate
k will be explained later in this section.

Fig. 2 Point v and its neighbor rings. Firstly, V1(v) is composed by
vertices connected by strong edges. Secondly, V2(v) is composed by
vertices up to those connected by dashed edges. Finally, Vk(v) is com-
posed by all vertices until those connected by pointed edges

We calculate the centroid of Vk(v) and translate the set
of points so the centroid is in the origin of the 3D coordi-
nate system. Then, we compute the best fitting plane to the
translated points. To do so, we apply Principal Component
Analysis to the set of points and we choose the eigenvec-
tor with the lowest associated eigenvalue as the normal of
the fitting plane. In our opinion, applying PCA is a better
choice than the least square fitting because the assumption
z = f (x, y) does not have a good behavior when the data do
not exhibit such functional characteristic.

The set of points is rotated so that the normal of the fit-
ting plane is the z-axis. As we choose the less principal
component as normal, the points exhibit a good spread in
theXY -plane after rotation and therefore we can only work
in XY -plane to calculate the derivatives. As final step before
calculating derivatives, we translate the set of points so that
the point v is in the origin of the XY -plane. This step will
facilitate the further analysis.

To calculate derivatives, we fit a quadratic surface to the
set of transformed points. Using least square method, we
find a paraboloid of the form:

z = f (x, y) = p1

2
x2 +p2xy + p3

2
y2 +p4x +p5y +p6. (4)

We chose a quadratic surface with only six terms because
it represents a paraboloid. That is, it is the best choice if
we need a function of two variables with quadratic terms.
Adding more terms implies that it is possible to fit a more
complex surface. However, more complex surfaces do not
have well-defined derivatives in certain points of the do-
main. In addition, we needed a simple expression in order
to apply the derivatives.

As we are interested in derivatives in the point v, one
could directly evaluate the derivatives of f (x, y) in the point
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(0,0), i.e.:

fx = ∂f (x, y)

∂x

∣∣∣∣
x=0

, (5)

fy = ∂f (x, y)

∂y

∣∣∣∣
y=0

. (6)

The above expressions should be a good estimate of
derivatives. However, these can be influenced by noise. In-
stead, we propose to apply a Gaussian function as proposed
originally by Harris and Stephens [7]. However, a difficulty
arises because in the original expression the derivatives are
discrete functions and our derivatives are continuous func-
tions. To address this problem, we propose to apply the inte-
gration of the derivatives with a continuous Gaussian func-
tion as follows:

A = 1√
2πσ

∫

R2
e

−(x2+y2)

2σ2 .fx(x, y)2 dx dy, (7)

B = 1√
2πσ

∫

R2
e

−(x2+y2)

2σ2 .fy(x, y)2 dx dy, (8)

C = 1√
2πσ

∫

R2
e

−(x2+y2)

2σ2 .fx(x, y).fy(x, y) dx dy, (9)

where σ is a constant, which defines the support of the
Gaussian function and the factor 1/

√
2πσ is a normaliza-

tion value.
Using calculus, we can reduce the expressions to

A = p2
4 + 2p2

1 + 2p2
2, (10)

B = p2
5 + 2p2

2 + 2p2
3, (11)

C = p4p5 + 2p1p2 + 2p2p3. (12)

Finally, we can formulate the matrix E associated with
the point v using the previously calculated values:

E =
(

A C

C B

)
. (13)

The Harris operator value in the point v is calculated as
in (3).

3.2 Adaptive neighborhood size

Several approaches can be considered to select the number
of rings around a point as neighborhood. If the object tes-
sellation is uniform, i.e., almost all triangles in the object
have the same size, we can use a constant number of rings
to all points, or use the points contained in a ball of radius r

and centered in point v. However, in irregular and complex
meshes, these methods do not approximate a neighborhood
adequately.

To tackle this problem, we propose an adaptive tech-
nique. Our method selects a different neighborhood size de-
pending on the tessellation around a point. Let us consider
an object as a graph G(V ′,E′), where V ′ = V and E′ is the
set of edges obtained from the adjacency information of the
object.

Given a point v ∈ V ′, a k-ring around v is the set of points
where the length of the shortest path to v is k:

ringk(v) = {
w ∈ V ′|∣∣shortest_path(v,w)

∣∣ = k
}
. (14)

The distance from a point v to the ringk(v) is defined as

dring
(
v, ringk(v)

) = max
w∈ringk(v)

‖v − w‖2. (15)

Finally, we define the neighborhood size of a point v as

radiusv = {
k ∈ N,dring

(
v, ringk(v)

) ≥ δ and

dring
(
v, ringk−1(v)

)
< δ

}
, (16)

where δ is a fraction of the diagonal of the object bounding
rectangle.

It is important to note that the proposed method always
finds a neighborhood to a point, even with complex and ir-
regular tessellations around that point.

3.3 Selecting interest points

With each vertex associated with its Harris operator value,
we propose two ways to select the interest points of a given
object. Firstly, we preserve the vertices which are local max-
imum. To do so, we select a vertex v which holds the follow-
ing condition:

h(v) > h(w), ∀w ∈ ring1(v). (17)

Secondly, we propose two approaches to select the final
set of interest points.

• Select the points with the highest Harris response. We can
pick a constant fraction of interest points depending on
the application. In this proposal, we obtain the points with
higher saliency and therefore, some portions of the object
do not have interest points.

• Representatives of Interest Points Clusters. This approach
can be used when we want a good distribution of inter-
est points in the object surface. This proposal consists of
two steps. First, we sort the pre-selected interest points
according to their Harris operator value in decreasing or-
der. Second, we apply Algorithm 1 to cluster the sorted
points and select the final set of interest points.

The value of ρ can be considered as a fraction of the
diagonal of the object bounding rectangle and it has effect
in the number of returned interest points.

Figure 3 shows the result of the two options to select in-
terest points.



I. Sipiran, B. Bustos

Fig. 3 Selection options. (a) Armadillo model. (b) Selected points with highest Harris response. (c) Selected points by clustering

Algorithm 1 Interest Points Clustering
Require: Set P of pre-selected interest points in decreasing

order of Harris operator value
Ensure: Final set of interest points

1: Let Q be a set of points
2: Q ← ∅
3: for i ← 1 to |P | do
4: if minj∈[1,|Q|] ‖Pi − Qj‖2 > ρ then
5: Q ← Q ∪ {Pi}
6: end if
7: end for
8: Return Q

4 Experimental evaluation and discussion

In this section, we show the experimental results of our
implementation of the Harris 3D method using a standard
benchmark. The presentation of results is divided in two
parts. First, we experiment with several aspects and parame-
ters of our method. The objective is to investigate the effect
of the parameters on the repeatability of interest points. Sec-
ond, we compare our method with methods in the state of
the art, namely the Heat Kernel Signatures proposed by Sun
et al. [24] and the Salient Points detection method proposed
by Castellani et al. [3].

4.1 The data set

For our experiments, we use the SHREC robust feature de-
tection and description benchmark [1], which is available in
the public domain. This data set is composed of triangular
meshes with approximately 10,000–50,000 vertices.

The collection consists of three basic shapes (null shapes)
from which a set of transformations have been applied. For
each null shape, nine transformations were used: isome-

try (non-rigid transformation), topology, big holes and mi-
cro holes, local and global scaling, additive Gaussian noise,
shot noise, and downsampling (less than 20% of the original
points).

Each transformation is performed in five versions. In all
transformations, except isometry and scale, each version
represents a strength level, so high levels correspond with
stronger transformations. The scales used in scaling trans-
formation were 0.5, 0.875, 1.25, 1.625, and 2. For the isom-
etry transformation, each version reflects a non-rigid trans-
formation of the null shape. Therefore, each null shape has
45 transformed shapes and there are 138 shapes in the whole
collection.

4.2 Evaluation methodology

An interest point detection method returns a set of detected
points F(Y ) = {yk}k for each shape Y (typically, |F(Y )| �
|Y |). The performance is measured by comparing the inter-
est points computed for transformed shapes and the corre-
sponding null shape.

The quality of the interest points detection was measured
using the repeatability criterion. Assuming for each trans-
formed shape Y in the data set the ground-truth dense cor-
respondence to the null shape X to be given in the form
of pairs of points C0(X,Y ) = {(y′

k, xk)}|Y |
k=1 (and same way,

C0(Y,X)), an interest point yk ∈ F(Y ) is said to be repeat-
able if a geodesic ball of radius R around the correspond-
ing point x′

k : (x′
k, yk) ∈ C0(X,Y ) contains an interest point

xj ∈ F(X). The subset Fr(Y ) ⊆ F(Y ) of repeatable interest
points is given by

FR,X(Y ) = {
yk ∈ F(Y ) : F(X) ∩ BR(x′

k) �= ∅,

(x′
k, yk) ∈ C0(X,Y )

}
, (18)

where BR(x′
k) = {x ∈ X : geod(x, x′

k) ≤ R} and geod de-
notes the geodesic distance function in X. The repeatability
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Fig. 4 (a) Repeatability values obtained by selecting spatial neighbor-
hoods. The radii of the ball was chosen as a fraction of the diagonal of
the bounding box of the object. Results show average repeatability for

the range [0.01,0.1] for the radii. (b) Average repeatability for spatial
neighborhoods with radii 0.02 and 0.03, respectively. The comparison
was done by levels of transformation

rep(Y,X) of F(Y ) in X is defined as the percentage of in-
terest points from F(Y ) that are repeatable:

rep(Y,X) = |FR,X(Y )|
|F(Y )| . (19)

For a transformed shape Y and the corresponding null
shape X, the overall feature interest points detection quality
was measured as (rep(Y,X) + rep(X,Y ))/2. The value of
R = 5 was used in the benchmark. This radius constitutes
approximately 1% of the shapes diameter. Interest points
without ground-truth correspondence (e.g. in regions in the
null shape corresponding to holes in the transformed shape)
were ignored.

4.3 Analysis of parameter values

In this section, we present the experimental results of our
method. We experimented with several aspects and investi-
gated the effect of the parameters on the repeatability of our
proposal. Specifically, we evaluated the following aspects:

• The type and size of local neighborhood. We tested three
options: spatial neighborhood, adaptive neighborhood
and ring neighborhood. We are interested in evaluating
the effectiveness of each option.

• The parameter K. We tested with different values for this
parameter in order to investigate its effect in the calcula-
tion of Harris response.

• The type of interest point selection method. We only eval-
uated the method that selects the points with higher re-
sponse. We intended to figure out the effect of the number
of selected interest points in the effectiveness of our algo-
rithm.

It is important to point out that for all experiments we
used a basic configuration of parameters and only the ana-
lyzed parameter was changed. Our basic configuration con-
sisted of adaptive local neighborhood with δ = 0.01, K =
0.04, and selection of 1% of the number of vertices with
higher Harris response as final interest points set. All graphs
presented in our results were adequately scaled for a better
visualization.

4.3.1 Local neighborhood

In order to asses the importance of the determination of
the local neighborhood around an analyzed vertex, we per-
formed three experiments: spatial, adaptive and ring neigh-
borhoods.

Spatial neighborhoods Our first experiment consisted in
evaluating the repeatability of our method when local neigh-
borhoods were determined as the set of vertices lying inside
of a ball centered in the analyzed vertex. We varied the ra-
dius of the ball and calculated the average repeatability for
all transformations and for all levels. The radii were taken as
fraction of the diagonal of the bounding box of the object.
Figure 4a shows the results of this experiment.

We varied the fraction of the diagonal in the range
[0.01,0.1]. The highest values of repeatability were ob-
tained for 0.02 and 0.03. In order to find the best value, we
plot the repeatability curves for these values with respect to
the level of transformation (see Fig. 4b). Both curves are
very similar, with a slight advantage for fraction = 0.03.

There are two important issues that we should remark.
First, the average repeatability decreases with large neigh-
borhoods. This is because large neighborhoods cannot be
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Fig. 5 Average repeatability for
adaptive neighborhoods with
several δ values

Table 1 Repeatability of our method using spatial neighborhood with
fraction = 0.03. Average number of detected points: 303

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 75.77 79.89 78.01 79.45 79.85

Topology 76.25 76.39 76.21 76.19 76.18

Holes 75.56 75.52 75.36 75.34 74.98

Micro holes 76.19 76.17 76.10 75.98 75.92

Scale 82.58 80.01 77.38 74.79 72.29

Local scale 74.33 72.49 69.34 65.46 62.66

Sampling 73.21 71.06 69.35 66.75 59.51

Noise 73.81 73.14 71.78 69.94 67.48

Shot noise 76.32 76.36 76.04 76.09 75.90

Average 76.00 75.67 74.40 73.33 71.64

well fitted by a quadratic surface, and therefore the calcu-
lation of derivatives and the Harris response are not robust.
Second, as it can be seen in Fig. 4b, repeatability always
decreases with stronger levels of transformations (except in
those where the level does not represent the strength of the
transformation). Nevertheless, this behavior was expected.

Table 1 shows the repeatability for each transformation
and each level for fraction = 0.03. Although there are trans-
formations where, on average, the repeatability is greater
than 75% (for example, isometry, topology, holes, micro
holes, scale and shot noise), spatial neighborhoods have
some problems. On the one hand, vertices belonging to a
spatial neighborhood do not necessarily belong to the same
local surface around the analyzed vertex. Moreover, the set
of vertices could not belong to the same connected compo-
nent. Having neighborhoods with vertices not belonging to
the local surface, the fitting task is not robust, damaging the
overall process and therefore the effectiveness. On the other
hand, spatial neighborhoods do not ensure a good balance

Table 2 Repeatability of our method using adaptive neighborhoods
with δ = 0.01. Average number of detected points: 303

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 93.59 95.14 94.43 95.05 95.18

Topology 93.48 93.43 93.25 93.16 93.15

Holes 92.08 92.04 91.60 91.25 90.67

Micro holes 93.59 93.59 93.56 93.55 93.51

Scale 94.29 93.80 93.42 93.04 92.60

Local scale 93.49 92.89 91.27 88.81 86.55

Sampling 92.23 90.40 87.83 84.52 77.98

Noise 92.33 81.83 72.51 66.75 63.44

Shot noise 93.54 92.60 91.27 89.93 88.20

Average 93.18 91.75 89.90 88.45 86.81

around the analyzed vertex, which is a problem if the mod-
els have poor triangulations.

Adaptive neighborhoods Our second experiment consisted
in varying the parameter δ with the adaptive local neigh-
borhood approach. Figure 5 shows the average repeatability
obtained in this experiment. Table 2 shows all values of re-
peatability obtained by the best configuration (δ = 0.01). We
tested values smaller than 0.01 for δ; however, the improve-
ment was not significant.

Similarly to the spatial neighborhoods, the average re-
peatability decreases as the extent of the neighborhoods in-
creases. Large neighborhoods cause an inadequate fitting,
affecting the effectiveness of the method. Results show an
improvement of more than 15% in almost all entries with
respect to those obtained by spatial neighborhoods. This
percentage represents approximately 45 repeatable interest
points detected in difference, compared to the spatial neigh-
borhood effectiveness. However, although the results im-
prove significantly, there is still visible a rapid fall in the re-
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peatability values for noise transformation, even below those
obtained by spatial neighborhoods.

From Table 2 we can note some interesting issues. On
the one hand, from the transformations where the level rep-
resents strength, some of them present only a slight fall of
average repeatability between the minimum and maximum
levels: topology (0.33%), holes (1.41%) and micro holes
(0.08%). On the other hand, from stronger level, the worst
performance is obtained by sampling and noise transforma-
tions.

The behavior with the sampling transformation is ex-
pected because our method relies on selecting a fraction
of the number of vertices as interest points. So the num-
ber of interest points detected in level 1 is much larger than
in level 5. Clearly, the number of repeatable interest points
in this transformation cannot be larger than the number of
interest points in high levels. Therefore, the repeatability
decreases considerably with downsampling. Also, with re-
spect to the noise, the level of distortion of the meshes in
stronger levels of this transformation is high, causing a con-
siderable deformation in the shapes. Surely, local neighbor-
hoods are affected considerably and the process of fitting is
not robust. We argue that the decrement with respect to spa-
tial neighborhoods is due to the use of geodesic distances
when collecting the rings around the analyzed vertex. As
the noise is applied in the direction of the normal of each
vertex, the same parameter δ in different levels of transfor-
mations can determine neighborhoods of considerable dif-
ferent sizes. Obviously, for the reasons explained before, the
repeatability of our method is affected.

Ring neighborhoods The third experiment evaluated the
repeatability with different numbers of rings selected as
neighborhood. Figure 6 shows the result for this experiment.
Table 3 shows all repeatability values.

From Fig. 6 we can observe the same effect on the size
of the neighborhood. With larger neighborhoods, average
repeatability begins to decrease systematically. The inter-
esting thing about this experiment is to note that a very
small neighborhood gave the best results. One reason could
be that, with small neighborhoods, the fitting step is ro-
bust and, thus, derivatives are well calculated. Nevertheless,
small neighborhoods are unstable in presence of noise or an-
other distortion transformation. Still, repeatability values for
stronger levels of noise improve up to 13% with respect to
spatial neighborhoods and up to 15% with respect to adap-
tive neighborhoods.

4.3.2 Parameter K

The parameter K is used in (3) to calculate the Harris
response for a given vertex. This parameter needs to be
tuned experimentally. We varied the parameter in the range

Table 3 Repeatability of our algorithm using one ring neighborhood.
Average number of detected points: 303

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 95.86 96.74 96.51 96.78 96.79

Topology 95.92 95.92 95.84 95.75 95.70

Holes 93.60 93.77 93.74 93.83 93.48

Micro holes 95.86 95.86 95.88 95.89 95.93

Scale 96.76 96.54 96.24 95.93 95.39

Local scale 95.92 94.97 93.49 91.35 89.01

Sampling 94.69 93.55 92.19 89.05 80.26

Noise 92.97 92.07 90.82 89.71 88.54

Shot noise 95.99 95.57 94.90 93.62 92.41

Average 95.28 95.00 94.40 93.55 91.95

[0.04,0.1] and tested the average repeatability. Figure 7
shows the results. In our implementation, the best result
was for K = 0.07. However, the improvement was not sig-
nificant with respect to our default value K = 0.04 (ap-
proximately 0.34%, representing almost 2 repeatable inter-
est points of difference).

4.3.3 Interest point selection

In Sect. 3.3, we proposed two options for the final selec-
tion of interest points. The clustering approach is interesting
from the point of view of applications requiring points well
distributed over the whole surface. Nevertheless, as the pro-
cess is based on grouping vertices with high responses, this
step is not necessarily robust according to the repeatability
criterion. Therefore, we did not consider this approach in
our evaluation.

On the other hand, selection of vertices with higher re-
sponse is interesting because the number of selected vertices
is an important issue in applications. For example, in shape
matching, we might be interested in only a few points, as
the efficiency of matching is closely related to the number
of points to be matched. So, we evaluated the effect of re-
ducing the number of selected vertices.

Our method selects a fraction of the number of vertices
as interest points, so the smaller is the fraction, the fewer in-
terest points are selected. We varied the fraction in the range
[0.001,0.01]. Figure 8 shows our results.

Clearly, the average repeatability increases as the number
of interest points is increased. This trend is maintained for
values of fractions larger than 0.01. An important aspect to
note is that by reducing the number of interest points in half,
with respect to the value of fraction 0.01, the average re-
peatability decreases approximately in 6.34%. This is an ad-
vantage because if we need to apply subsequent processes,
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Fig. 6 Average repeatability
with ring neighborhoods sizes
taken from the range [1,10]

Fig. 7 Effect of varying K in
average repeatability

Fig. 8 Effect of reducing the
number of interest points in
average repeatability

we can opt for reducing the number of interest points se-
lected, at expense of slightly reducing the robustness of the
delivered points. The number of interest points will finally
depend on the application and the trade-off between robust-
ness and efficiency.

As an additional test, we combine the parameter values
with the best effectiveness, obtaining a slight improvement.
Table 4 shows the repeatability values for all transforma-
tions in all levels. Compared to Table 3, on average results
improve for all levels.
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Table 4 Repeatability of our algorithm using combination of values
with the best effectiveness. Average number of detected points: 303

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 96.01 96.73 96.26 96.60 96.62

Topology 96.01 95.97 95.82 95.73 95.71

Holes 94.62 94.43 94.10 94.01 93.81

Micro holes 96.01 96.01 95.98 95.96 95.95

Scale 97.06 96.89 96.28 95.62 94.94

Local scale 96.24 94.96 93.40 91.26 88.84

Sampling 95.31 93.62 92.08 89.13 80.42

Noise 93.09 92.58 91.59 90.33 88.79

Shot noise 96.03 95.66 95.00 93.83 92.79

Average 95.60 95.21 94.50 93.61 91.99

4.4 Comparison with other methods

In order to compare our method with the state of the art,
we selected two recent methods for detecting interest points
on 3D meshes: Heat Kernel Signatures [24] and Salient
Points [3]. Next, we specify the configuration used for these
methods:

Heat kernel signature (HKS) As this method relies on the
eigendecomposition of the Laplace–Beltrami operator on
the mesh, we needed to simplify the meshes to approxi-
mately 10,000 vertices (we used Garland’s method [4]). In-
terest points were computed on the simplified meshes and
mapped back to the original mesh by using the nearest
neighbor vertex. We used the value t = 0.1 from the total
area of the surface to evaluate the Heat Kernel Signature
and 2-ring neighborhood in order to detect interest points.
We present three variations:

• HKS1: No pre-processing step was used. We imple-
mented this variant based on the original HKS implemen-
tation.1

• HKS2: The Geomagic sotfware was used for removing
non-manifold edges, and faces were consistently oriented.
Results for this variant were taken from the original re-
port [1].

• HKS3: Filtering using persistent homology was used to
discard unstable feature points. Results were also taken
from [1].

Salient points (SP) We chose the best performance of this
method from the SHREC feature detection benchmark.

Tables 5, 6 and 7 show the repeatability obtained by the
variants of the Heat Kernel Signature method. Table 8 shows

1http://www.geomtop.org/sunjian/software/hks.html.

Table 5 Repeatability of HKS1 feature detection algorithm. Average
number of detected points: 35

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 83.20 87.39 88.44 87.29 87.21

Topology 79.73 81.27 81.49 81.08 80.94

Holes 80.15 77.57 75.86 73.35 71.16

Micro holes 81.02 80.76 80.68 80.43 80.50

Scale 79.99 79.78 79.90 80.18 80.36

Local scale 80.38 80.65 78.84 75.55 72.99

Sampling 82.70 82.23 82.66 82.04 78.99

Noise 75.80 74.55 72.37 69.34 68.23

Shot noise 79.96 81.14 81.15 80.07 78.77

Average 80.33 80.59 80.15 78.82 77.68

Table 6 Repeatability of HKS2 feature detection algorithm. Average
number of detected points: 23

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 98.08 98.72 98.01 97.88 98.04

Topology 97.44 96.10 92.26 91.22 88.64

Holes 91.48 90.60 86.78 83.73 81.86

Micro holes 98.08 96.69 96.00 95.52 94.87

Scale 99.36 99.36 98.50 97.90 97.68

Local scale 98.08 94.83 90.09 83.05 78.31

Sampling 97.05 97.88 97.39 96.27 92.35

Noise 95.30 92.78 91.67 89.24 87.62

Shot noise 98.08 96.22 93.39 90.45 87.32

Average 96.99 95.91 93.79 91.70 89.63

the results of the Salient Points method. All comparison
were done with respect to our best results shown in Table 4.
Our method is represented by H3D.

As can be seen, our method outperformed the HKS1 vari-
ant without pre-processing and the Salient Points method.
The benefit is consistent in each entry of the table, which is
an important result regarding the relevance of the techniques
compared. With respect to HKS2 and HKS3, these variants
present significant improvements. However, they need well-
formed shapes in order to work properly, which affects their
efficiency considerably.

Table 9 presents the best method for each entry in the re-
peatability table. It can be seen that Harris 3D method out-
performs the rest in stronger levels (4–5). The Heat Kernel
based method is predominant in isometry, scale and sam-
pling transformations. In the isometry transformation, the
effectiveness of this method (HKS3 variant) is perfect with
an average repeatability of 100%. A similar scenario takes

http://www.geomtop.org/sunjian/software/hks.html
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Table 7 Repeatability of HKS3 feature detection algorithm. Average
number of detected points: 23

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00

Topology 94.44 90.38 87.45 88.70 85.76

Holes 80.54 79.00 75.25 72.10 69.99

Micro holes 100.00 100.00 98.15 96.58 95.64

Scale 100.00 100.00 100.00 98.61 97.78

Local scale 97.44 96.79 93.02 87.25 82.90

Sampling 100.00 100.00 100.00 100.00 96.20

Noise 100.00 95.19 93.16 89.37 85.77

Shot noise 100.00 95.30 90.03 82.10 74.38

Average 96.94 95.19 93.01 90.52 87.60

Table 8 Repeatability of SP algorithm. Average number of detected
points: 409

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry 86.17 87.42 87.24 87.76 88.15

Topology 86.18 85.63 85.58 85.56 85.56

Holes 85.72 85.10 84.34 83.56 82.58

Micro holes 68.52 62.27 57.96 54.75 51.99

Scale 89.80 88.28 86.82 85.14 83.70

Local scale 85.73 84.97 84.48 83.33 82.12

Sampling 85.02 83.15 82.21 79.94 77.61

Noise 87.31 85.43 83.28 81.36 79.40

Shot noise 85.95 84.42 82.77 81.76 81.23

Average 84.49 82.96 81.63 80.35 79.15

place in the scale transformation, where for small scales
(levels 1–2–3) the average repeatability is 100%. For the
sampling transformation, the average repeatability is near to
perfect too.

The reason for the good performance of the Heat Kernel
based method in the aforementioned transformations is its
intrinsic definition. This property allows it to appropriately
define a characteristic shape based on the spectrum of the
Laplace–Beltrami operator, and therefore it is robust against
isometry and rigid transformations such as scaling. On the
other hand, it is also robust to different samplings of the in-
put mesh, as the interest points are selected for being points
with large values of Heat Kernel Signatures in large times.
That is to say, the interest points selection process is robust
to different tessellations.

Differently, in transformations that deform the local
structure of shapes, Harris 3D obtained the best results.
Firstly, there is a total predominance of our method with

Table 9 Methods with the best performance by transformations and
strengths. HKS—Heat Kernel Signature. H3D—Harris 3D

Transform. Strength

1 ≤2 ≤3 ≤4 ≤5

Isometry HKS3 HKS3 HKS3 HKS3 HKS3

Topology HKS2 HKS2 H3D H3D H3D

Holes H3D H3D H3D H3D H3D

Micro holes HKS3 HKS3 HKS3 HKS3 H3D

Scale HKS3 HKS3 HKS3 HKS3 HKS3

Local scale HKS2 HKS3 H3D H3D H3D

Sampling HKS3 HKS3 HKS3 HKS3 HKS3

Noise HKS3 HKS3 HKS3 H3D H3D

Shot noise HKS3 HKS2 H3D H3D H3D

Average HKS3 HKS3 HKS3 H3D H3D

respect to the holes transformation. Secondly, our method
outperforms the rest in most levels (3–5) for topology, local
scale and shot noise transformations. Finally, it is interesting
that our method is also the best in stronger levels for micro
holes and noise transformations. Averages Table 9 represent
the majority in each level, so we can observe the predomi-
nance of Harris 3D in levels 4 and 5.

Figure 9 shows some examples of interest points over a
class of shape of the SHREC feature detection benchmark
using Harris 3D.

5 Conclusions

We presented a robust interest point detector for 3D meshes.
This task is of importance due to the ability of reducing the
amount of information needed in subsequent processes. Our
algorithm effectively adapts the well-known Harris corner
detection for images in order to be used for 3D meshes. Our
proposal has showed to be effective, obtaining high repeata-
bility values using the SHREC feature detection and descrip-
tion benchmark.

Our method is robust for several reasons. First, the use
of a Gaussian function to smooth the derivatives surface
contributes to effectively mitigate the effect of local defor-
mations introduced by noise, holes, change of tessellations,
and so on. Second, our proposal of adaptive neighborhoods
improves considerably the alternative of spatial neighbor-
hoods. In addition, from the results obtained by using ring
neighborhoods, our experiments confirm the fact that bal-
anced neighborhoods favor the overall process. This is be-
cause, with a balanced set of points, the approximation of
derivatives in the analyzed point is better. Finally, along with
the task of final selection of interest points, Harris 3D pro-
poses several alternatives for its effective use, making an in-
teresting alternative in applications such as shape matching
and registration, just to name a few.
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Fig. 9 Shapes with interest
points. Interest points are
represented with small red balls

Furthermore, our performed experiments suggest that our
method could be used in extreme conditions with good re-
sults. This is an important advantage with respect to the state
of the art, since it allows us to deal with several kinds of
shapes and expand the spectrum of possible applications in
the future.
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